

Outline

- Impacts of Variable Generation on Ancillary Services
- Dispatchable Intermittent Resources
- Introduction to Proposed Ramp Products
- Ramp Products in Day Ahead and Real Time Markets
- Simple Example for Cost / Benefit Analysis
- Questions

Impacts of Variable Generation on Ancillary Services

Regulation

- MISO Peak Load: 105 GW
- Wind generation Installed Capacity over 12 GW
- MISO Regulation Requirements
 - MISO requirement is a bidirectional value varying between 300 MW to 500 MW depending on load level and time of the day
- Impact of Variable Generation
 - In general is little to none
 - Wind Generation can impact the net load variability and uncertainty
 - One minute wind generation variation has very little impact on net load one minute variability
 - Standard deviation of Short-term wind generation forecast error is approximately 1% of wind generation capacity
 - The impact of short-term wind forecast error in net load uncertainty is low

Contingency Reserve(s)

MISO Contingency Reserve Requirement

- Criterion: largest generation unit / unit + transmission corridor
- It is set to 2000 MW
- Approx. 50% is set as spinning reserve
- The rest is the supplement reserve (provided by on-line and offline resources including Demand Response Resources)
- Due to the deliverability issues there are zonal requirements
 - Up to seven zones
- Main Characteristics of the Contingency Event
 - Occur very quickly (seconds)
 - Needs to be compensated in 10 minutes
- Current RTO / ISO practice does not use the contingency reserve for other shortages in the system

Contingency Reserve(s) – Cont'd

Impact of Variable Generation

- None. Unless a single wind farm is exceeding the current 2000
 MW (system wide) or zonal requirement
- Forecasted wind generation (and / or actual wind generation)
 variability has its own latency much longer than a contingency event
 - MISO has experienced loosing wind generation in the magnitude of 6000 to 7000 MW in about 8 hours (majority of these drops were forecasted) – In opposite direction to the load variation
 - Wind generation variation of +/- 2000 MW in 20 minutes (rare events)

Fundamental Issue

- No increase in the conventional reserve requirement
- What is the most challenging issue in the day to day operation?
 - Ramping Capability
 - Keeping enough rampable capacity in the system to go after the net load variability and uncertainty
 - Enforcing system wide Ramp Up and Down capacity constraints in the Day Ahead process (partly covering intra-hour ramp requirements)
 - Intra Day RAC process updates commitment of the generation resources to make sure upon changes in the system conditions there is enough headroom in the system
 - Following the ramp needs close to the real-time and committing fast start up units if needed
 - Enforcing an offset value in the dispatch function partly to enforce specific positioning of the units

Dispatchable Intermittent Resources

Dispatchable Intermittent Resources (DIR)

- A new class of generation resources
- Market and settlement treatment very close to conventional generators
- Utilize Forecast Maximum Limit to allow full market participation
- DIR registration required for Resources with "Intermittent" Market Registration
- Same setpoint tolerance as generation resources
- All Resources with "Intermittent" Market Registration subject to RSG for *positive and negative differences* between DA schedules and RT capability

General DIR Market Rules

- DIRs are eligible to supply Energy, but not Operating Reserves (Regulating, Spinning, or Supplemental)
- DIRs and traditional generation have same market behavior in Day-Ahead Market (DA)
- Primary difference between DIRs and traditional generation in RT is source of Maximum Limit
 - Participants submitted short term Forecast value
 - MISO generated short term Forecast value
 - Sate Estimator
- DIRs can Self-Schedule Energy (self-schedule will be reduced if greater than RT capability)

Example – (Single DIR – Correct Initial Response)

Example – Continued

Introduction to Proposed Ramp Products

The Ramp Problem

- Maintaining sufficient ramp capability is a significant challenge in operating the MISO system
 - Online capacity may be available but operations must push resource ramp capabilities to meet immediate real-time net load
 - RT-UDS load offset MWs, quick start resources, and other tools are currently used to manage the real-time variations / uncertainties
- Ramp shortages are the most common cause of scarcity
 - Scarcity reflects reduction of real-time robustness / reliability
 - Scarcity pricing has big market impact for short-term ramp issues
- Reliability and economic benefits from reducing rampinduced events and managing real-time ramp availability
 - Redispatch for ramp flexibility when cost effective
 - Select flexible resources for commitment

Motivation for the proposed Ramp Products

- Operational flexibility is limited within a fleet of resources
 - Flexibility from online resources can be inexpensive compared to committing offline resources
 - Increasing levels of reserve/regulation is an expensive and less efficient approach for managing operational flexibility
 - Market-based incentives will provide efficiency and transparency to obtain additional flexibility from the existing fleet
- Resource mix changes require retention or increase of flexibility to deal with increasing variability and uncertainty
 - Fuel prices making flexible resources less expensive and more heavily loaded can erode available responsiveness
 - Increasing penetration of renewable resources and interchange flexibility require additional ramp capability to ensure reliability

What are the proposed Ramp Products?

- New products to explicitly manage the ramp available from the controllable generation thru market incentives
- Up and down ramp products reserve a specified level of resource ramp capability to meet RT dispatch variability
 - Ramp requirements vary to support different operating conditions, forecasts, uncertainties, time of day and / or year
 - Ramp products reserve exclusive resource capacity and are cooptimized with energy and Ancillary Service products
 - Cleared ramp for future variations is automatically reduced when ramp capacity is needed to meet requirements in the current RT dispatch interval
 - Ramp product prices determined by resource opportunity cost
 - Ramp prices are expected to frequently be zero when ramp availability is not constrained

What are the proposed Ramp Products? (p.2)

- Ramp products in Commit & Dispatch for DA, RAC, RT
 - Redispatch can create operational ramp cushion reducing the need for real-time commitments
 - Ramp pricing and settlement for transparent market incentives
 - Ramp products are measured similar to today's Market-Wide
 Ramp-Up and Ramp-Down (Headroom) Capacity Constraints
 - These constraints currently apply only to commitment functions and cost increases are covered by make-whole payments
 - Ramp products would extend these constraints
- Current markets can be extended with minimal impact
 - Existing energy and AS products are not changed (although the interaction of pricing and dispatch may change clearing results)
 - Versatile ramp product formulation is compatible with current markets and future changes such as ELMP and LAD

Market Coverage

What Changes from Current Operations?

- Ramp products are designed to support current process
 - Reflect today's operations with a systematic market approach
 - Reduce operator efforts
 - Provide market incentives for participants
- Commitment functions nothing new
 - Impact is similar to today's Market-Wide Ramp-Up and Ramp-Down Capacity Constraints
- Real-Time Headroom Monitoring no process impact
 - Will help ensure available capacity has needed ramp flexibility
- Real-Time and Day-Ahead Dispatch new products
 - New ramp products impact market clearing quantities and prices

Ramp Products in Real Time

Ramp Products in Real Time

Ramp Product Demand Curves

- Ramp capability acts as a buffer to absorb forecasted and unexpected operational variability
 - Ramp retained in a previous dispatch is available for energy dispatch in the current RT dispatch
- Multi-step demand curve pricing allows automatic tradeoff between reserving ramp capacity for a future interval and using the ramp for current needs

Operational Benefits of Ramp Products

- Reduced instances of short-term ramp-induced scarcity
 - Improved operational reliability
 - Reduce dependence on operator adjustments for short-term variations using ramp products as operational shock absorbers
 - Reduce scenarios requiring CT startup
 - Reduce need for RT UDS delta MW adjustments
- Market transparency providing economic incentives for resources to provide ramp
 - Resources are paid opportunity cost so would not make more money by providing a different product
 - Long-term incentives to offer and potentially improve resource flexibility

Operational Benefits of Ramp Products (p.2)

- Ability to manage operational flexibility needed for increasing penetration of variable energy resources
 - Less expensive and effective alternative to increasing regulation requirements
 - Maximize ability to extract ramp capability from current fleet within limited online headroom
- Maintain ramp flexibility when resource mix changes
 - Changes in relative fuel prices and/or environmental laws can cause difference in operational resource mix (e.g., more gas generation online and priced to be loaded at max)
 - Ramp products bias market commitment toward a more flexible resource available at slightly higher cost
 - Dispatch to maintain ramp capability on fast responding resources when more ramp is needed

Ramp Products in Day-Ahead and Real Time Markets

Day Ahead Market – Ramp Requirements

Requirements

- Up and Down Ramp Capability requirements in Day Ahead
 Market are based on expected average hourly Real Time needs
 - Addressing variations in ramp requirements arising from forecast errors in NSI, load, intermittent resources, and resource deviations
 - Real Time requirements may vary each interval within the hour
- Day Ahead ramp capability requirements are estimated based on anticipated Real Time requirements
- Requirements are identified on system and / or zonal levels

Resource Participation

- Eligible resources (dispatchable resources) can clear for Up Ramp and Down Ramp products in Day Ahead Market
- Self scheduling of ramp products is not allowed in Real Time or Day Ahead Markets

Day Ahead Market – Payments and Charges

Pricing

- Dispatch solutions produce Ramp Capability clearing prices for the incremental cost of additional Ramp Capability products
- Prices include opportunity costs of not providing other products, and demand curves if not fully cleared

Payments

- Similar to AS products
- Awarded Ramp Capability is paid product clearing price
 - Revenues from Ramp Capability included in make whole payment calculation

Charges

- Similar to AS products
- Load charges are increased to compensate for Ramp capability payments to resources (although savings are expected in other areas)

Real Time Ramp Capability Payments & Charges

- Awarded Ramp Capability is paid product clearing price
 - Subject to real-time performance monitoring of allowable deviation
 - Revenues from Ramp Capability included in make whole payment calculation
- Charges for Ramp Capability are similar to other ancillary services (MISO proposal)
 - Load charges are increased to compensate for ramp capability payments to resources, however reduced scarcity pricing, CT commitment, etc. decreases load payments (causing an overall production cost saving)
- MISO is exploring alternative charging mechanism (e.g., 80/20)

Cost / Benefit Analysis

Empirical Analysis

Analysis of an actual price spike shows potential for significant benefits using a \$10 penalty value.

MISO Alternative Up Ramp Analysis Spike on January 26, 2011 \$10 Cap. No Ramp Capacity Cap

[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]	[K]	[L]
Interval	LMP	Change in	Change in Production Cost ²	-	Change in Available Spin	in Spin	_	Up Ramp Used in Original Dispatch	Original Total Up Ramp [H] + [I] - [E]	Additional Ramp in New Strategy	Total Up Ramp in New Strategy [J] + [K]
1:00	44.2			-	Opin	00313	80	•	301.1	Otrategy	301.1
1:05	41.42				0	0	132.7	134.5	267.2		267.2
1:10	36.6				0	0	150.6				262.3
1:15	35.68	3.76	142.39	0	0	0	237.9	90.6	328.5	18.3	346.8
1:20	47.28	1.61	3.12	0	0	0	39.9	334.7	374.6	48.4	423
1:25	191.75	-10.75	-2145.01	156.9	13.5	-1105.2	2.7	403.8	249.6	13.1	262.7

Total Production Cost	-1928.78
Total Production Cost and Shortage	-3033.98
Production Cost Benefit in Spike Interval	2145.01
Total Production Cost Benefit in Spike Interval Including	
Shortage	3250.21
Average Production Cost in Non-Spike Intervals	43.25
Ratio without Shortage Benefits	49.60
Ratio with Shortage Benefits	75.15

Questions

- MISO Web Page for Ramp Management
 - www.misoenergy.org/WhatWeDo/StrategicInitiatives/Pages/Ram pManagement.aspx

