

CSP and Natural Gas Hybrids

Craig Turchi

National Renewable Energy Laboratory

April 19, 2012

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Parabolic Trough CSP

www.centuryinventions.com

Typical CSP Plant (e.g. SEGS)

• Simple gas burner; easy implementation

Limitation:

• Gas thermal efficiency <37% (vs. >50% in combined cycle plant)

CSP / Natural Gas Hybrids

Challenge:

To obtain high solar fraction with firm dispatchability and lowest possible cost.

Integrated Solar Combined Cycle (ISCC)

Advantages:

- Shares infrastructure (power block, transmission, O&M staff, etc.)
- Good solar-to-electric efficiency

Limitations:

- Maximum of ~15% solar contribution at design point
- Less than 5% annual average solar contribution

Graphic: Abener 2010

75 MW solar-augment ISCC Plant in Florida

Solar Preheat to Gas Turbine

Solar energy used to preheat compressed air feeding a gas turbine. Solar integration can be through salt HTF (left) or direct air heating (right):

NREL 1995; Kolb 1998

Schwarzbozl et al. 2006

Solar Preheat to Gas Turbine

EU Solugas demonstration project

- 1. Solar-energy heats pressurized air to 650°C.
- 2. The heated air is fed into the combustion chamber of a 4.6 MWe industrial gas turbine.
- Later testing to look at solar temperatures of 800°C to 1000°C

GAS

SOLU

Solar Steam Injected Gas Turbine

Livshits and Kribus 2012

Solar Steam Injected Gas Turbine

Efficiency benefits occur by using fossil exhaust to heat steam. Adding solar steam boosts power, but not overall efficiency.

Co-located Gas Turbine / CSP (oil HTF)

Co-located Gas Turbine / CSP (salt HTF)

Torresol Energy 20 MW Gemasolar Seville, Spain

The Basic Question:

Conclusions

- 1. Virtually all CSP plants have some gas integration
- 2. The challenge for CSP/gas hybrids is to integrate the two heat sources such that both reap benefits
 - Benefits must outweigh issues associated with greater system complexity
- 3. ISCC can save gas and offset gas turbine power degradation during hot weather; however, solar fraction is low.
- 4. Some novel hybrid configurations promise high efficiency with high solar fraction, but these are yet to be proven.
- 5. Co-located systems have clear, albeit small, advantages and low risk.
- 6. Lower CSP system costs are necessary for broad market competitiveness

CSP / Gas Hybrids

Hybrid Type	Benefits	Limitations
Gas back-up	 Low risk, proven technology >50% solar fraction Improves dispatchability 	 Poor gas heat rate Little benefit to CSP costs
ISCC	 Low risk, proven technology Good solar-to-electric efficiency Reduces CSP cost (shared power block) 	 <10% solar fraction Retrofits limited to plants with duct burners
Solar preheat to Gas Turbine	 >50% solar fraction at design point (at high temperature) Can run combined cycle power block 	 High temps present materials issues
Solar STIG	 Up to 50% solar fraction Only low-grade CSP collectors required 	 Efficiency drops as solar fraction increases Requires efficient dry-cooling to recover water
Co-located CSP / Gas Turbine	 Low risk, proven technology (oil trough) Improves CSP efficiency (oil trough) Improves heat rate of co-located peaker >50% solar fraction 	• LCOE benefits on the order of 5%