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Overview
 Physical power systems and competitive wholesale markets were Physical power systems and competitive wholesale markets were 

designed around the operation of traditional forms of generation (fossil, 
nuclear, hydro)

 V i bilit d t i t h l b h t i ti f Variability and uncertainty have always been common characteristics of 
all power systems and are managed by grid operators with reserves

 Use of Variable Energy Resources is rapidly increasing; resulting in 
additional variability and uncertainty for the power system over 
seconds, minutes, and hours

 VER integration impacts are substantially reduced with large liquid fast VER integration impacts are substantially reduced with large, liquid, fast 
markets, large balancing areas with a strong grid  that capture diversity 
and enable access to the physical flexibility that exists in the regional 
power systemp y

 Forecasting VERs significantly reduces uncertainty and costs

 Numerous peer reviewed studies have shown that integrating large 
amounts of VER is effectively a balancing challenge (tens of minutes to 
hours)
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Overview
 Power systems have much greater ability to handle variable renewable Power systems have much greater ability to handle variable renewable 

energy than commonly understood

 Sources of flexibility include dispatchable plants, demand side resources, 
id / i t ti d tgrid / interconnections, and storage

 The extent to which existing flexible resources are actually available and 
used varies widely

 Key power system characteristics which affect whether technical flexibility 
is available include: grid strength, market size, scheduling / dispatch 
speed use of forecasting and value of flexibility in the marketspeed, use of forecasting, and value of flexibility in the market 

 Market rules are evolving to improve system flexibility including improved 
system scheduling / dispatch, improved procurement / payment of 
ancillary services incentives for load following / ramp management;ancillary services, incentives for load following / ramp management; 
Additionally, markets will increasingly incorporate dispatch of VERs
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Variable Energy Resources are a Growing 
Percentage of Electricity ConsumptionPercentage of Electricity Consumption
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Source: 2010 Wind Technologies Market Report, Ryan Wiser & Mark Bolinger, LBNL, June 2011
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Source: 2010 Wind Technologies Market Report, Ryan Wiser & Mark Bolinger, LBNL, June 2011



U.S. Grid-Connected PVU.S. Grid Connected PV
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Source: Tracking the Sun IV. LBNL, Sept 2011



U.S. DOE SunShot Goals for PV 

8Source: U.S. DOE SunShot, October 2011; Goodrich, Margolis, et al, NREL.



Variable Energy Resource Integration Challenge

 Reliable power system operation requires balance 
between load and generation within acceptable statistical 
limits

 Output of Variable Energy Resources resources cannot 
be controlled and scheduled with high degree of accuracybe controlled and scheduled with high degree of accuracy

 VER levels are becoming large enough to have 
measurable impact on system operating characteristics 

dand cost
 Capacity value of power plants depends on their 

contribution to system reliabilitycontribution to system reliability
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Variability and Uncertainty
V i bilitVariability

– Load varies by seconds, minutes, hours, by day type, and with weather
– Regional imports / exports vary with system needs & power prices
– VERs vary with fuel availability (wind, solar)
– Supply resources may not be available (or limited in capacity) due to 

partial outages

Uncertainty
– Operational plans are made on basis of best available forecasts (load, 

VERs, imports/exports); some error is inherent
– Supply side resources may deviate from dispatch instructions
– Regional imports / exports

Key questionsKey questions
– How do VERs affect existing variability & uncertainty
– What are the impacts on reliability?
– What are the costs?

10

What are the costs?
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Operating Reserves

That capability above firm system demand required to 
provide for regulation, load forecast error, equipment 
f d d h d l d t d l l t ti Itforced and scheduled outages, and local protection. It 
consists of spinning and non-spinning reserves [NERC]

13Source: Operating Reserves and Wind Power Integration: 
An International Comparison. IEA/NREL. 2010. 



Reserve Functions
Differentiated by the type of event they are used for (non-eventDifferentiated by the type of event they are used for (non event, 
contingency event, etc), the timescale of the response 
(seconds, minutes, hours) and the response direction 
( /d )(up/down)
– Frequency Response Reserves

• Provide initial frequency response to major disturbance

– Regulating Reserve
• Maintain area control error due to random movements in a time frame faster than 

energy markets clear (seconds)
• Responsive to Automatic Generation Control (AGC)• Responsive to Automatic Generation Control (AGC)

– Ramping Reserve
• Respond to failures and events that occur over long time frames (minutes-hours)

Load Following Reserve– Load Following Reserve
• Maintain area control error and frequency (minutes)

– Supplemental Reserve
• Replace faster reserve to restore pre-event level (minutes-hours)

14Source: Operating Reserves and Wind Power Integration: 
An International Comparison. IEA/NREL. 2010. 



Frequency Response
 Th ti l ti f The sequential actions of 

primary, secondary, and 
tertiary frequency control 
restore system frequencyrestore system frequency 
following the sudden loss of 
generation
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15Source: Use of Frequency Response Metrics. LBNL. 2010. 
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Frequency Response
 Frequency Response in the Eastern Interconnection is declining and has 

been for many years 
– Drivers have included markets, disaggregation of vertically integrated utilities, 

increase in independently produced power
 Use of Frequency Response Metrics Report (LBNL) recommendations 

include:
– Accelerate efforts to better understand interconnection and balancing 

th it ifi i t f f t l ( i ll i thauthority specific requirements for frequency control (especially in the 
Eastern Interconnection)

– Interconnections must schedule adequate primary and secondary 
frequency control reserves to both manage variations in net system loadfrequency control reserves to both manage variations in net system load 
and withstand the sudden loss of generation

– The frequency control capabilities of the interconnections should be 
expanded including expanded use of the existing generation fleet, expanded 
use of demand response, expanded use of variable renewable generation 
frequency control capabilities, and expanded use of advanced technologies 
(e.g. energy storage and electric vehicles)
D l h i l i d h d ti d– Develop comprehensive planning and enhanced operating procedures
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Wind Integration Costs
Cost of Reserves to Balance Variability and Uncertainty

Fast Markets (scheduling < 15 minutes)

17Source: 2010 Wind Technologies report, June 2011. 



VER Integration Summary 
 Variable Energy Resources add variability & uncertainty to the power 

system over seconds minutes and hourssystem over seconds, minutes, and hours
– There are significant benefits from diversity (geographic, resource, load)
– Regulation impacts are small
– Load following / ramp management can be an issue at higher levels of VERsg p g g
– Unit commitment and scheduling impacts can dominate without forecasting
– No credible single contingency leading to simultaneous loss of regional wind generation

 Forecasting wind & solar significantly reduces uncertainty and costs
 Key mitigation measures included:

– Larger balancing areas and stronger interconnections
– Large, liquid, fast markets (energy, ancillary services, demand response)

 Requires a robust and flexible power system
– Improved flexibility in generation and load
– Transmission expansion is needed to capture diversity (geographic, load, generation)

 Market rules for wind generation are evolving
– Dispatch / Economic Curtailment 
– Load following / Ramp management 

18

 Large interconnected power systems can reliably and economically 
accommodate 20+% wind & solar generation if we get the 
infrastructure and the market rules right!



NERC Integration of Variable 
Generation Task ForceGeneration Task Force

Formed by NERC’s Planning & OperatingFormed by NERC s Planning & Operating 
Committee in December 2007

29 official “members” 67 participants29 official members , 67 participants
– Utilities, ISO / RTOs, wind and solar industry, 

government , international representationg p

Focus on reliability

19



NERC Summary Report: Accommodating 
High-Levels of Variable Generation

Th k iThree key requirements:
Forecasting

Forecasts of variable generation output inform the operators and– Forecasts of variable generation output inform the operators and 
reduce the uncertainty

Transmission
– Interconnect remote variable resources
– Smooth variable generation across a broad geographical region and 

resource portfolio
– Deliver ramping capability and ancillary services from inside and 

outside a Balancing Area to equalize supply and demand

FlexibilityFlexibility
– Greater access to larger pools of generation and demand can facilitate 

the large-scale integration of variable resources
Additional flexible resources such as demand response plug in hybrid– Additional flexible resources such as demand response, plug-in hybrid 
electric vehicles, and energy storage can help balance steep “ramps”

20



Stability, Balancing, Adequacy
IEA T k 25 D i  & O ti  f P  IEA Task 25 – Design & Operation of Power 
Systems with Large Amounts of Wind Power

21Sources: IEA Wind R&D Task 25. 2008 
Harnessing Variable Renewables. IEA. 2011.



The Load Following Challenge
Net Load Variability and UncertaintyNet Load Variability and Uncertainty

 Power system operators are 
constantly faced with variability and y y
uncertainty
– Load and regional imports/exports

vary by seconds minutes hours byvary by seconds, minutes, hours, by 
day and with weather; may not be 
what it was forecast to be

– In real time operations the system S WWIS NREL / GE E 2010In real time operations, the system 
must respond to the net load including 
both expected and unexpected 
variations

Source: WWIS, NREL / GE Energy. 2010

– VERs add to the net load variability 
and uncertainty

 Increasing net load variability &

22

 Increasing net load variability & 
uncertainty is driving the  rising 
need for more flexible resources Source: MISO. 2011



Power System Flexibility

The ability to increase / decrease supply or demand
– In response to fluctuations in either supply or demand 

(expected or otherwise)(expected or otherwise)
– By a large amount, rapidly, and frequently
– Measured in MW available to ramp up or down over time
– Capability of the power system to maintain reliable supply 

through rapid and large imbalances

Institutional flexibilityInstitutional flexibility
- Fast energy markets
- Sub-hourly scheduling protocols with neighboring balancingSub hourly scheduling protocols with neighboring balancing 

areas

Additional sources of flexibility may be needed at 
higher penetration rates of renewables
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Flexibility Supply Curve

24Source: DOE / National Renewable Energy Laboratory, 2011. 



Demand Response & Smart Grids

D d R h i ifi i l h lDemand Response has significant potential to help 
mitigate VER integration impacts; Will require 
changes to market rules and regulatory policieschanges to market rules and regulatory policies 

Smart grids support greater deployment of variable 
b idi t ith lenergy resources by providing operators with real-

time system information and mechanisms to actively 
control distributed resourcescontrol distributed resources
– Demand Response
– Electric Vehicle (charging and discharging)Electric Vehicle (charging and discharging)
– Distributed Generation
– Storage

25



Storage

D il d i l i f iDetailed simulations of power system operation 
have found no requirement for storage up to 30% 
wind energy penetrationwind energy  penetration

Cost-effective storage can be a valuable system
resourceresource

Assessment of the value of storage needs to include the 
revenue streams from multiple co optimized servicesrevenue streams from multiple, co-optimized services. 
Services can include:
– Energy arbitragegy g
– Ancillary Services
– Capacity Value
– Transmission & distribution support

26



The Balancing Challenge - IEA

27Sources: Aidan Touhy, EPRI; Harnessing Variable Renewables. IEA. 2011. 



Flexibility Assessment Tool - IEA

Grid strength, 
Operating & Market p g
Policies, Use of 
Forecasting, etc

 Designed to capture key aspects of power systems for a Designed to capture key aspects of power systems for a 
quantitative / qualitative analysis of power system flexibility

 Generic tool, designed to be applicable to any type / size of 
tpower system

28Sources: Aidan Touhy, EPRI; Harnessing Variable Renewables. IEA. 2011. 



Attributes of Power Systems - IEA

29Sources: Aidan Touhy, EPRI; Harnessing Variable Renewables. IEA. 2011. 



Flexibility Assessment Tool - IEA

30Sources: Aidan Touhy, EPRI; Harnessing Variable Renewables. IEA. 2011. 



Integration of Variable Energy Resources 
FERC Docket RM10-11 (November 2010)

Notice of Proposed Rule Making to remove barriers 
to the integration of variable energy resourcesto the integration of variable energy resources

 Key proposals:
– Transmission providers would need to provide intra-hourlyTransmission providers would need to provide intra hourly 

transmission scheduling
– Variable generators would need to provide meteorological and 

operational data to transmission operators for improvingoperational data to transmission operators for improving 
forecasts

– Transmission providers would establish a rate to recover 
capacity costs incurred by the transmission operator to provide 
balancing between scheduling periods to a generator in a 
transmission providers balancing area (i.e. generator 
regulation service)
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Frequency Regulation Compensation NOPR 
FERC Dockets RM11-7 / AD10-11 (February 2011)

 N ti f P d R l ki t d d di i i ti Notice of Proposed Rulemaking to remedy undue discrimination 
in the procurement of regulation service in RTO/ISO markets

 Key proposals: Key proposals:
– Require that each regulating resource is paid a uniform capacity payment
– Require that all resources be paid for performance (price per MW, up or 

down; reflect accurate response to the system operator’s dispatch signal)down; reflect accurate response to the system operator s dispatch signal)
– Commission seeks comment on appropriateness current net energy 

payment given the proposed two part payment

Third Party Provision of Ancillary Services NOI 
FERC Dockets RM11-24 / AD10-13 (June 2011)

 N ti f I i ki t Notice of Inquiry seeking comments on:
– Ways to facilitate development of robust competitive markets for 

provision of ancillary services from all resource types (market power, 
th h ld lt ti t d i l ti i NOPR)

32

threshold, alternative rates, advancing regulation service NOPR)
– Issues unique to electric storage and the role they can play in providing 

multiple services including ancillary services (accounting, reporting)



Midwest ISO 
 Peak load: 109,000 MW (2010), ( )

 Resources: 144,000 MW (2010)

– By capacity: 53% coal, 28% gas, 7% 
nuclear, 3% hydro, 6% wind

– By energy: 75% coal,14% nuclear, 6% 
natural gas, 4% wind, 1% hydro 

– Time on the margin: coal ~80%, natural 
gas ~20% (2010)g

 Wind generation
– Installed:  10,000 MW (August 2011)

– Active Queue: ~50,000 MW (~75% of queue)
– Projected (RPS Reqrmnts in 2030): ~25,000 MW

 Markets: 
– Day-ahead and real-time energy markets
– Ancillary services markets 

(regulation & contingency reserves) 
– Co-optimized between energy & ASM

Financial Transmission Rights market

33
Sources:  2010 State of the Market Report for the Midwest ISO, IMM, June 2011

2010 Summer Assessment Report, Midwest ISO October 2010
Wind Integration Work Plan, Midwest SO, Dec 2010

– Financial Transmission Rights market
– Voluntary Capacity Auction 



Wind Generating Capacity in MISO

August 2011:
10,000 MW of 
registered capacityregistered capacity

34

Source: MISO, Wind Operations 
Planning, Markets Committee of the 
BOD, 2/23/11; MISO Info Forum 
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Source: IMM Quarterly Report Summer 2011, BOD System Planning Committee 
9/14/11



Wind Curtailments - MISO
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Dispatchable Intermittent Resources - MISO
Key points of the MISO DIR designation include: y p g

– Allow real-time optimization to determine an economic dispatch of wind 
generation, with consideration for congestion (along with other resources)

– Wind can be included in the day-ahead and real-time co-optimization, is able y p ,
to set price, is eligible for make whole payments

– Decrease manual curtailments, increase market efficiency & transparency
– Day-ahead and real-time wind generation offer structures are like those for y g

Generation Resources except:
• In real-time, no economic maximum offer; wind generators provide a CP-node 

level forecast (5 minute) that is used for the Max Limit
• In day ahead no operating reserve offers; MSC & RSC motions support allowing• In day-ahead, no operating reserve offers; MSC & RSC motions support allowing 

DIR to supply spinning and regulating reserves

– Intermittent Resources will be required to register as DIRs or purchase 100% 
long term firm transmission service after a two year transition; waiver for g y ;
projects >5 yrs old

– All IRs and DIRs will be subject to Revenue Sufficiency Guarantee charges; 
For DIRs, this will be for positive deviations only (over scheduling Day Ahead) 
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because the Economic Minimum will be zero. Resources with IRs market 
registration will be subject to RSG for both positive and negative deviations.



Dispatchable Intermittent Resources - MISO
FERC Order issued 3/2/11 Conditionally Approved DIR Proposal

- Approved DIR for wind generators
- Resources that register as DIR may not switch back to IR
- Directed MISO to review applicable generation resources tariff, to analyze (over 

the coming year) whether the existing 8% tolerance band continues to bethe coming year) whether the existing 8% tolerance band continues to be 
appropriate for Excessive/Deficient Energy Deployment charges for DIRs, to 
address whether DIRs should be eligible to be able provide operating reserves

 MISO expectation of benefits of DIRs in Real Time operations MISO expectation of benefits of DIRs in Real-Time operations
– Improve market efficiency through economic dispatch and better price signals
– Improve system reliability through better congestion management by replacing 

manual curtailments with automated real-time dispatch; some overall reduction in p
curtailment

– Enable wind generation to fully participate in the real-time market

DIR launched on June 1st 2011DIR launched on June 1 2011
– 1,200 MW wind registered as DIR in the June Commercial Model
– 2,037 MW wind registered as DIR in the Sept Commercial Model

Key issues / concerns include:
38

Key issues / concerns include:
– Forecasting, Ability to follow dispatch, Coordination with MISO



MISO Load Following Challenge

 Operational flexibility from controllable resources is limited 
within a fleet of resources
– Flexibility from online resources is inexpensive compared toFlexibility from online resources is inexpensive compared to 

committing offline resources
– Existing resources (supply or demand side) should be incentivized to 

provide required flexibilityprovide required flexibility

 Ramping capability is a non-trivial issue in MISO with 
predominantly coal fired generation resourcespredominantly coal fired generation resources
– Other RTOs or utilities with high renewable penetration have more 

flexible generation resources (e.g. natural gas, hydro) in their fleet

39Source: MISO



40Source: MISO



Ramp Management / Load Following - MISO

 Key drivers
– Net load variability (load, wind, & Net Scheduled Interchange) and 

forecast uncertainties (forecast errors and generator deviations) 

 Objectives
– Ensure required flexibility in all market layers (Day Ahead to Real 

Time))
– Maximize the usage of current approaches
– Explore new products and services

 Approach Approach
– Aid reliable operations by keeping sufficient ramp capability available 

for use in Real Time dispatch to address variations in ramp 
requirements

– Reduce price volatility by reducing instances of transitory shortages 
arising from ramp shortages

– Acquire ramp capability through a market mechanism so a price signal 
can be sent to the market

41

can be sent to the market

Source: MISO



MISO Load Following Challenge
 Need to economically schedule controllable resources to match Need to economically schedule controllable resources to match 

known Net Load variability plus its uncertainty at any given time
– Net Load is the load seen by controllable resources

• Net Load = Load – Non-controllable generation + Net Scheduled 
Interchange (imports/exports)

– Requires a good understanding of the Net Load variability & uncertainty 
and of the flexibility of the controllable resources

 Sources of variability
– Load, NSI, Wind

 Sources of uncertainty
– Load forecast error, NSI forecast error, Wind forecast error, Generators 

setpoint deviations (not following dispatch)

42Source: MISO



High Level Impacts of Ramp Capability Products
By withholding Ramp Capabilities for Up Ramp and Down Ramp
1) The dispatch results would be altered:

– Selected units were not fully dispatched for energy and other Ancillary Service 
products making room for ramp capability productsp g p p y p

– Due to the energy and Ancillary Services changes of the selected units, the 
energy and Ancillary Services dispatch for the rest of the units is changed

– Real-time Ramp shortage is mitigated

2) The cleared prices would be altered:
– Units providing Ramp Capability products are subject to loss of opportunity cost if 

their dispatch is changedp g
– Reduce system price volatility by reducing instances of transitory shortages 

arising from ramp shortages
– Acquire ramp capability through a market mechanism so a price signal can be 

sent to the market
– Under normal situations with no price spikes, load payments are increased to 

compensate for opportunity costs, however, including the price spikes, load 
pa ments are decreasedpayments are decreased

43
Source: MISO



MISO Ramp Capability Proposal

 K I / Q ti i l d Key Issues / Questions include:
– Does the proposed approach (adapt existing market practices rather 

than develop new ancillary service) actually provide incentives for 
existing and new flexible resources or does it simply subsidize 
existing inflexible resources?

– Who will pay for flexibility incentives (spread across all load as with 
current ancillary services or assigned to “cost causers”)?

 Schedule
– Workshops held 5/2/11, 6/16/11, 9/1/11; next workshop 12/13/11p , , ; p
– Implementation ramp management enhancements likely to be 2012
– Postings: 

https://www.midwestiso.org/WhatWeDo/StrategicInitiatives/Pages/RampManagement.aspx    

44



Flexibility Summary
 Ph i l t d titi h l l k t d i d Physical power systems and competitive wholesale markets were designed 

around the operation of traditional forms of generation (fossil, nuclear, hydro)
– Variability and uncertainty have always been common characteristics of all power systems 

and are managed by grid operators with reservesand are managed by grid operators with reserves

 Use of Variable Energy Resources is increasing rapidly in many countries
– Variable Energy Resources (wind, solar) add variability and uncertainty to the power 

system over seconds, minutes, and hours

 VER integration impacts are significantly reduced with:
– Large, liquid, fast markets (sub-hourly, co-optimized energy and ancillary service markets)
– Large balancing areas with a strong grid: captures significant benefits to diversity 

(geographic, resource, load);  enables access to the physical flexibility that exists in the 
regional power system

– Forecasting VERs significantly reduces uncertainty and costs

 Numerous peer reviewed studies have shown that integrating large amounts Numerous peer reviewed studies have shown that integrating large amounts 
of VER is effectively a balancing challenge (tens of minutes to hours)

– Regulation impacts are small (geographic diversity, net load); Unit commitment and 
scheduling impacts are mitigated by forecasting 

– Load following / ramp management can be an issue at higher levels of VERs 
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Flexibility Summary
 Power systems have much greater ability to handle variable renewable 

energy than commonly understoode e gy t a co o y u de stood
– Existing flexibility should be accessed first

 Sources of flexibility include: 
– Dispatchable plants, demand side resources, grid / interconnections, and storagep p , , g , g

 The extent to which existing flexible resources are actually available and 
used varies widely

– Some regions not only have large amounts of flexible resources but are also more likely g y g y
to make those resources available for balancing

 Key power system characteristics which affect whether technical flexibility 
is available include: grid strength, market size, scheduling / dispatch 
speed, use of forecasting, and value of flexibility in the market 

– After existing flexibility is made available, it may be necessary to increase the flexible 
resources through removal of barriers and development of incentives

– Will need to provide incentives to fully engage flexibility from the supply side (both– Will need to provide incentives to fully engage flexibility from the supply side (both 
conventional and renewable), the demand side, interconnections / grid, and storage.

 Market rules are evolving to improve system flexibility including:
– Improved system scheduling / dispatchp y g p
– Improved procurement / payment of ancillary services
– Incentives for load following / ramp management
– Additionally, markets will increasingly incorporate dispatch of VERs 46
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NERC’ t diti l d fi iti f “ li bilit ” i t f t

“Adequate Level of Reliability”
NERC’s traditional definition of “reliability” consists of two 

fundamental concepts: Adequacy and Operating Reliability. 

Th B lk P S ill hi d li bili h iThe Bulk-Power System will achieve adequate reliability when it 
possesses the following characteristics:
1. The System is controlled to stay within acceptable limits during 

l tinormal operation;
2. The System performs acceptably after credible Contingencies;
3. The System limits the impact and scope of instability and 

cascading outages when they occur;cascading outages when they occur;
4. The System’s Facilities are protected from unacceptable damage by 

operating them within Facility Ratings;
5 The System’s integrity can be restored promptly if it is lost; and5. The System s integrity can be restored promptly if it is lost; and
6. The System has the ability to supply the aggregate electric power 

and energy requirements of the electricity consumers at all 
times, taking into account scheduled and reasonably expected 

h d l d t f t t
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unscheduled outages of system components.
Sources:  NERC Definition of “Adequate Level of Reliability” Dec 2007.

NERC “2009 Bulk Power System Reliability Performance Metric Recommendations” Sept 2009.



Balancing & Frequency Control
 Each Interconnection of the Each Interconnection of the 

power system is a large 
machine; the speed of 
Interconnection is frequency 
(cycles per second or Hertz)(cycles per second or Hertz)

 If interconnection generation 
exceeds customer demand, 
frequency increases beyond q y y
the target of 60 Hz until 
balance is achieved; 
conversely if there is a 
temporary generation p y g
deficiency

 Balance is initially restored due 
to load that varies with 
frequency (e.g. electric motors) 

56Source:  NERC Balancing and Frequency Control, Nov 2009.



Benefits of Geographic Diversity

 Both variability and 
uncertainty of 
aggregate wind 
decrease 
percentage-wisepercentage wise 
with more wind, 
more geographic 
areaarea

 Transmission is key 
to capturing this p g
phenomena

57Source: Thomas Ackermann, Energynautics



1.1

Wind Correlation vs Distance
RGOS Study Area

 Aggregate variability of wind generation is 
i ifi tl d d ith hi ll

0.9

1
significantly reduced with geographically 
diverse wind resources.

 Reliability will also benefit from a more 
geographically diverse system.   

 A robust transmission system is needed so 
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Poly. (North - South) Poly. (East - West) Source: Midwest ISO



Can wind power start and stop suddenly?
 L i d f h Large wind farms have many 

individual wind turbines
 The turbines are spread over 

il d d t imany miles and do not experience 
the same wind at the same time

 ERCOT event Feb 24, 2007: drop 
of 1 500 MW over 2 hours similarof 1,500 MW over 2 hours, similar 
to behavior of load

www.osei.noaa.gov
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Extreme Wind Events Are 
Typically Not Contingency EventsTypically Not Contingency Events

Extreme wind events are ramping events notExtreme wind events are ramping events, not 
contingency events
– Electrical events are still contingencies (singleElectrical events are still contingencies (single 

feeder…)
– Geography prevents all turbines from seeing wind

t i lt l d d thevents simultaneously and spreads the response
Increasing the amount of wind increases the 

ramp duration not the ramp speedramp duration, not the ramp speed
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Integration of Conventional 
G tiGeneration

Costs for Maintaining Contingency ReservesCosts for Maintaining Contingency Reserves
– Contingency reserves are maintained to 

accommodate the variability and uncertainty of large 
conventional generators

Costs from Integration of Baseload Plants
B l d l d l l t h li it d bilit– Baseload coal and nuclear plants have limited ability 
to change their level of output resulting in an 
additional ramping burden on other generatorsp g g
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VER Integration Study –
Approach & Methodspp

 Capture system characteristics and response through 
operational simulations and modeling;

 Capture VER characteristics; geographic diversity through 
synchronized weather simulation;

 E i i d i ti i bi ti ith l d Examine wind variation in combination with load 
variations (Net Load);
– Match with actual historic utility load and load forecasts;y ;
– Use actual large wind plant power statistical data for short-term 

regulation and ramping;

 Utilize VER forecasting best practice and combine VER Utilize VER forecasting best practice and combine VER 
forecast errors with load forecast errors;

 Examine actual costs independent of tariff design 
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structure.
 Examine impacts of BA consolidation and fast markets.  
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(% of (from 

chart)
(% of 
peak)

GRE 3443 MW 56 MW 1.617%

MP 2564 MW 48 MW 1 874%

Estimated 
Regulating 

MP 2564 MW 48 MW 1.874%

NSP 12091 MW 104 MW 0.863%

OTP 2886 MW 51 MW 1.766%

Sum of regulating 259 MW

Requirements for 
MN BAs - 2020  

63Source: MN DOC

Sum of regulating 
Capacity

259 MW

Combined 20984 MW 137 MW 0.655%



Capacity Value – Wind Generation
M f l ti l t t ib ti t li bilit i thMeasure of relative plant contributions to reliability in the 

context of overall system reliability
Wind is primarily an energy resource, but can make a small p y gy

contribution to planning reserves
 Depends on timing of wind energy vs. load characteristics
 V i f it l Various uses for capacity value

– Capacity markets (e.g. PJM)
– Resource adequacy
– Resource planning

 Effective Load Carrying Capability (ELCC)
– Increase in load that can be supported with a new generator while pp g

holding the system reliability constant (fixed LOLE)
– Data-driven, empirical approach based on hourly load profiles & 

actual generator unit data
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From a NERC perspective, capacity is typically calculated at 
between ~10% & 20% of nameplate



Regulation & Load Following
REGULATION LOAD FOLLOWING REGULATION LOAD FOLLOWING

Patterns Random, 
uncorrelated 

Largely correlated 

Generator control Requires AGC ManualGenerator control Requires AGC Manual

Maximum swing 
(MW) 

Small 10 – 20 times more 

Ramp rate 5 – 10 times more SlowRamp rate 
(MW/minute) 

5 10 times more Slow

Sign changes 20 – 50 times more Few 

 

65



Regulation Findings 
 Increases in regulation Increases in regulation 

requirements due to even large 
amounts (over 15%) of wind 
generation are small g

 Large turbine count and 
geographic diversity contribute to 
substantial “filtering” of these fast 

i ti i i d tivariations in wind generation 
output

 Lack of correlation to system load 
also contributes to modest impactalso contributes to modest impact

 Some types of (much smaller) 
loads can have much greater 
influence on regulation g
requirements
– Right:  System with wind 

generation and arc furnace load
• Mill load dominates regulation
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• Mill load dominates regulation 
needs


